中国石油大学(华东)研究生"学术十杰"推荐人选情况一览表

推荐单位 (盖章):

2023年10月10日

姓名	姓名 彭伟 出生年月		1995.11 学号 B20150005		导师	蒋文春	学院	新能源	研究方向	化工过程机械		入学时间	2020. 09	联系方式	15650153580			
							į	发表论文	大的情况(限填5	项)								
	著作或	论文名称	出版单位或刊物名称、国际刊号、期号、起止页码				页码		、作者姓名 者标注*号)	出版或发表 年度	是否被 SCI、SSCI、 CSSCI 收录	期間 (当年)	中科院分区(注 级版		是否中科院 TOP 期刊	他引次数(括号 中注明 SCI 或 SSCI)		
	ge rectifying to	ual stress in the head-cylinder wer by finite element method mental study	International Journal of Pressure Vessels and Piping, 0308-0161, 191 (2021) 104311					Yun Luo, Lin	nn Jiang*, Qiang Jin, Yu nchang Ren, Kai Zhang, n-Tung Tu	2021	是	是 3.0 3区		级版)	否	13 (SCI)		
difference	method: Theore	arement by indentation energy tical and experimental study	International Journal of Pressure Vessels and Piping, 0308-0161, 195 (2022) 104573				195 Wei Pe Bin Ya		n Jiang*, Guanghua Sun, ing Shao, Shan-Tung Tu	2022	是	3.0		级版)	否	22(SCI) ESI 高被引		
stress: Estin	mation of stress	measuring welding residual -free indentation curve using k prediction model	International Journal of Pressure Vessels and Piping, accept.				Wei 1	Peng , Wench Guanghua Su	nun Jiang*, Bin Yang*, in, Xiaoming Shao	2023	是	3.0	3区(升级版)		否	0		
		川试二向残余应力	中国科学: 物理学 力学 天文学 1674-7275, 53(2023) 214602				彭伟 ,科		滨, 孙广华, 邵晓明, 孔 豪宇, 李玫蓁	2022	否	0.86	4区(升级版)		否	0		
Corrosion (Cracking of Rep	Residual Stresses and Stress pair Welding on 304 Stainless ects of Heat Input	Materials, 1996-1944, 10(2020) 2416				Yun Luc	Yun Luo*, Wenbin Gu, Wei Peng , Qiang Jin, Qingliang Qin, Chunmei Yi		2020	是	3.748	3区(升级版)		否	19 (SCI)		
科技竞赛、科学技术奖的获奖情况(限填 5 项)										主持或参与的科研项目情况(限填 5 项)								
获奖时间		成果名称		奖励名称		等级		人排名 授予部门 送人数		项目:	名称	起止时间	项目性质及来源	项目总金额 (万元)	本人分担经费金额 (万元)	本人排名/总人 数		
2023	Testi	Sensing Micro Indentation ng Technology —Mobile nechanics laboratory	第四十八	届日内瓦国	际发明展	金奖	3/7 学生位		上联邦政府、世界知识产 权组织		焊接残余应力压入能量差法测试理 论与实验研究		校级/研究生创新工程	0.5	0.5	1/1		
2023	面向在役	承压设备安全评估的微压痕 测试技术及应用	中国发明协会范	2023 年度发	明创业奖创新奖	一等奖	6/6 学生位		中国发明协会	焊接残余应力的原位压入法测试理 论和装备研发		2022.01-20 24.12	校自主创新科研计划 -卓青 A 类	30	无	主研		
2021		一能源装备剩余寿命的便携 式无损在线测试仪	第七届中国国际	示"互联网+"; 大赛	大学生创新创业	山东省金数	₹ 2/15	5	山东省教育厅	核电蒸汽发生器电 理多场耦合调控例		2022.01-20 25.12	国家自然科学基金联 合基金重点项目	260	无	骨干		
2021	迷你	型万能仪器化压痕设备	"杰瑞杯"第八届	中国研究生 计大赛	能源装备创新设	二等奖	2/3	中	国学位与研究生教育学 会	CAP1400 钢制安全 后热处理		2018.09-20 19.12	国家重大专项 课题任务	120	无	骨干		
2021	探微知	命能源装备寿命评估专家	第八届"创青	春"中国青年	创新创业大赛	铜奖	1/5	;	共青团中央	面向重型反应器及大型容器本质安 全的热处理调控残余应力技术研究		2021.01-20 25.12	中石化重大科技研发 项目	200	无	骨干		
	自我评价											本人保证所填写材料全部属实,若有弄虚作假,承担全部后果。(手抄)						
申请	研究生在读期间主要学术、科研成果及其科学价值或社会经济意义(限 500 字以内) 申请人第一作者发表 SCI 论文 3 篇、EI 论文 1 篇、ISSI 等国际会议论文 3 篇,其中 1 篇论文为 ESI 全球 Top1%高被引,										学生签名: 多年 2023 年 10 月 11 日							
级科研项	1 篇会议论文提名 ISSI2021 最佳学生论文奖;申请发明专利 8 件,已授权 4 件,其中 1 件实现转化(转让费 80 万);主持校级科研项目 1 项;负责起草 CSTM 团体标准 1 项(T/CSTM 00824—2023,第二完成人);获得第四十八届日内瓦国际发明展金奖(3/7,学生位次 1)、中国发明协会发明创业奖创新奖一等奖(6/6,学生位次 1)、第七届中国国际"互联网+"大学生创										守帅推荐意见							
	新创业大赛山东省金奖(2/15)、"杰瑞杯"第八届中国研究生能源装备创新设计大赛二等奖(2/3)、第八届"创青春"中国																	
	青年创新创业大赛铜奖(1/5)等; 骨干参编学术专著3部。																	
	从事焊接残余应力计算与测试研究,提出了焊接残余应力的压入能量差测试方法,研制了便携式无损压入测试仪。该技术突破美韩技术壁垒,实现了从理论到装备的国产化,填补了我国便携式压入测试技术与装备的空白。相关技术和产品已应									该生填写材料情况属实, 同意推荐				情况属实,同意推荐				
/	用于中国一重、青岛兰石等 9 家石化核电制造企业,得到中国特检院、全国锅炉压力容器标委会、设计制造单位的认可,并联合制定了测试标准,解决了承压设备热处理缺乏现场无损测试手段的难题,对提升我国重大装备制造水平与国际竞争力具										签名 花沙莎			盖章				
有重要意义。										2023 年 10 月 11 日				年	月 日			