基本信息 | ||||||||||||||||||
姓名:苑昆鹏 学位:博士 专业:动力工程及工程热物理 通讯地址:山东省青岛市黄岛区长江西路66号 | 系属:能源与动力工程系 职称:特任副教授 导师类别:硕士研究生 | |||||||||||||||||
研究方向 | ||||||||||||||||||
²微纳尺度传热 ²芯片热管理 ²新型能源材料的热能转换和调控 ²人工智能驱动的材料开发 | ||||||||||||||||||
教育背景 | ||||||||||||||||||
| ||||||||||||||||||
工作经历 | ||||||||||||||||||
| ||||||||||||||||||
科研项目 | ||||||||||||||||||
Ø二元硫族热电材料导热的压致弱化效应研究,2023.01-2025.12,国家自然科学基金青年项目,项目负责人 Ø三元类金刚石结构热电化合物导热的压致弱化机理研究,2022.08-2023.07,中国博士后科学基金面上项目,项目负责人 Ø飞秒分辨磁-电-热耦合及输运特性综合测试仪器,2024.01-2028.12,国家自然科学基金重大科研仪器研制项目,参与 Ø超高压力条件热输运机理研究,2018.01-2022.12,国家自然科学基金重点国际(地区)合作项目,参与 Ø飞秒、纳米时/空尺度热输运机理研究,2014.01-2018.12,国家自然科学基金重点项目,参与 | ||||||||||||||||||
代表性论文 | ||||||||||||||||||
1.Kunpeng Yuan,Xiaoliang Zhang, Yufei Gao and Dawei Tang, Soft phonon modes lead to suppressed thermal conductivity in Ag-based chalcopyrites under high pressure, Physical Chemistry Chemical Physics, 25(36), 24883-24893 (2023). 2.Zhonghua Yang, Wenbo Ning, Alejandro Rodriguez, Lihua Lu, Junxiang Wang,Yagang Yao, Kunpeng Yuan*, and Ming Hu, Anti-bonding mediated record low and comparable-to-air lattice thermal conductivity of two metallic crystals, Journal of Materials Chemistry C, 11(44), 15657-15668 (2023). 3.Kunpeng Yuan, Xiaoliang Zhang, Zheng Chang, Dawei Tang and Ming Hu, Antibonding induced anharmonicity leading to ultralow lattice thermal conductivity and extraordinary thermoelectric performance in CsK2X (X = Sb, Bi), Journal of Materials Chemistry C, 10(42), 15822-15832 (2022). 4.Kunpeng Yuan, Xiaoliang Zhang, Zheng Chang, Zhonghua Yang, and Dawei Tang, Pressure-induced anisotropic to isotropic thermal transport and promising thermoelectric performance in layered InSe, ACS Applied Energy Materials, 5(9), 10690-10701 (2022). 5.Zhongyin Zhang, Kunpeng Yuan, Jie Zhu, Xuanhui Fan, Jing Zhou and Dawei Tang, Thermal conductivity of SrTiO3 under high-pressure, Applied Physics Letters, 120(26), 262201 (2022). 6.Kunpeng Yuan,Zhehao Sun, Xiaoliang Zhang, Xiaojing Gong and Dawei Tang, A first-principles study of the thermoelectric properties of rhombohedral GeSe, Physical Chemistry Chemical Physics,22(4), 1911-1922 (2020).(2020年PCCP热点文章) 7.Yong Zhao, Kunpeng Yuan, Yinqiao Liu, Steph-Yves Louis, Ming Hu and Jianjun Hu,Predicting elastic properties of materials from electronic charge density using 3D deep convolutional neural networks, Journal of Physical Chemistry C, 124(31), 17262-17273 (2020). 8.Kunpeng Yuan, Zhehao Sun, Xiaoliang Zhang and Dawei Tang, Tailoring phononic, electronic,and thermoelectric properties of orthorhombic GeSe through hydrostatic pressure, Scientific Reports, 9,9490 (2019). 9.Kunpeng Yuan,Xiaoliang Zhang, Lin Li and Dawei Tang, Effects of tensile strain and finite size on thermal conductivity in monolayer WSe2, Physical Chemistry Chemical Physics,21(1), 468-477 (2019). 10.Kunpeng Yuan, Xiaoliang Zhang, Dawei Tang and Ming Hu, Anomalous pressure effect on the thermal conductivity of ZnO, GaN, and AlN from first-principles calculations, Physical Review B, 98(14), 144303 (2018). 11.Kunpeng Yuan, Mingman Sun, Zhaoliang Wang and Dawei Tang, Tunable thermal rectification in silicon-functionalized graphene nanoribbons by molecular dynamics simulation, International Journal of Thermal Sciences, 98, 24-31 (2015). 12.Zhonghua Yang#, Kunpeng Yuan#, Nan Li, Xiaoliang Zhang and Ming Hu, Giant manipulation of phonon hydrodynamics in ferroelectric bilayer boron nitride at room temperature and beyond. ACS Applied Energy Materials, 5(7), 8781-8790 (2022). 13.Zhehao Sun#, Kunpeng Yuan#, Zheng Chang, Shipeng Bi, Xiaoliang Zhang and Dawei Tang, Ultra-low thermal conductivity and high thermoelectric performance of two-dimensional triphosphides (InP3, GaP3, SbP3 and SnP3): a comprehensive first-principles study, Nanoscale, 12(5), 3330-3342 (2020). 14.Zhonghua Yang#, Kunpeng Yuan#, Jin Meng and Ming Hu, Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure, Nanoscale, 12(37), 19178-19190 (2020). 15.Zhonghua Yang#, Kunpeng Yuan#, Jin Meng, Xiaoliang Zhang, Dawei Tang and Ming Hu, Why thermal conductivity of CaO is lower than that of CaS: a study from the perspective of phonon splitting of optical mode, Nanotechnology, 32(2), 025709 (2020). |